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SUMMARY 
A free-surface-tracking algorithm based on the S O L A - V O F  method is analysed for numerical stability 
when modelling gas bubble evolution in a fluid. It is shown that an instability can arise from the fact that 
the bubble pressure varies with its volume. A time step stability criterion is introduced which is a function 
of the natural oscillation period but does not depend on the mesh size. This dependence suggests that the 
instability is likely to arise in the case of a general motion of a bubble, especially if break-up occurs. The 
effect is shown using linear Fourier analysis of the discretized equation for radial bubble oscillation and 
demonstrated numerically using a CFD code FLOW-3D. One- and three-dimensional situations are 
considered: a bubble in a fluid bounded by two concentric surfaces and a bubble floating in a fluid chamber 
with and without gravity. In cases where no analytical solution is available, a numerical method for the 
stability time step limit calculation is suggested based on finding the natural oscillation frequency. 

The nature of the instability suggests that it can be a feature of any numerical algorithm which models 
transient fluid flow with a free surface. 
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1. INTRODUCTION 

There have been many studies, both experimental and theoretical, devoted to the behaviour of 
gas bubbles in liquids. Walters and Davidson provided detailed experimental descriptions of 
large cylindrical’ and spherical’ bubbles floating in liquid chambers. Vokurka’ gave a compre- 
hensive review of the experimental work and methods for its evaluation and suggested a 
classification of freely oscillating bubbles in terms of oscillation amplitudes. 

The theoretical work has mainly been confined to studying steady flows or flows with small 
perturbations?.’ Recently Yang ef  aL6 made an extensive study of non-linear effects of 
oscillations of a large spherical bubble submerged in a uniform axisymmetrical flow. They 
showed that the radial (‘breathing’) wave mode interacts with the shape deformation modes to 
create resonances. The shape deformation oscillations occur either owing to the mean flow or 
owing to a pressure pulse in a quiescent fluid; in both cases a non-uniform pressure distribution 
on the bubble surface is generated. 

The relatively recent developments in the numerical techniques and computer hardware have 
enabled the simulation of bubble motion in a general case. An important part of a numerical 
simulation is the tracking of the free surface and defining boundary conditions on it. In the 
absence of gas-fluid mass exchange the boundary conditions are 
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where S is a free surface element, pb and p ,  are the bubble and fluid pressures at the surface 
respectively, is the surface tension coefficient, ( is the local surface curvature and u, is the fluid 
velocity projection on the surface normal n. 

Ryskin and Leal7** employed a boundary-fitting technique in which the free surface coincides 
with a grid line and applied the technique to steady state flows. The same method was applied 
by Kang and Leal' for transient axisymmetric and biaxial straining flows for a range of Reynolds 
and Weber numbers. 

Another approach to free surface problems is to model the motion of both fluid and gas by 
introducing a density discontinuity at the free surface." In this case the equations of motion 
are solved over the entire gas-fluid domain. Special care has to be taken in preserving the 
sharpness of the discontinuity front, e.g. by using a higher-order discretization scheme. However, 
for large differences in liquid and gas densities (pJpG z 1000) and large Reynolds numbers the 
motion of the gas inside the bubble becomes unimportant and the pressure distribution in it 
can be assumed uniform. 

Bugg and Rowe" used the SOLA-VOF method to model the evolution of large cylindrical 
and spherical bubbles ascending in a liquid chamber. Their results showed good agreement with 
experimental data. The SOLA-VOF method' evolved from the marker-and-cell (MAC) techni- 
que13 and uses the fraction-of-fluid function F to describe the free surface location and motion. 
It is now widely used for various applications involving transient free boundaries. 

The present work is concerned with the radial or 'breathing' wave mode of a bubble submerged 
in an ideal, incompressible fluid in one and three dimensions. The equations of motion of the 
fluid in these cases can be reduced to a single equation describing linear waves. It is shown that 
a numerical method of solving this equation is only conditionally stable if the free surface 
boundary condition is approximated explicitly. The maximum time step is a function of only 
the wave period. In an implicit method the position of the free surface is coupled with the fluid 
pressure and velocity. Although this makes the calculation unconditionally stable, it introduces 
a numerical diffusion which varies with the time step. 

The theoretical analysis is supported by simulations using a general-purpose CFD package 
FLOW-3D.* The main feature of the code is its ability to simulate multiple free surfaces in three 
dimensions using an algorithm based on the SOLA-VOF method. It is employed here to 
investigate the stability properties of the method in the case when the bubble pressure varies 
according to p Y y  = const. 

2. ANALYSIS 

2.1. Basic equation 

Consider the radial motion of an isolated symmetrical gas bubble of radius R(t) in an 
incompressible fluid bounded by a concentric spherical free surface of radius to > R(t), where 
the pressure is constant and equal to po  as shown in Figure 1. 

We will restrict the analysis here to the case of large Reynolds numbers, 

N,, = 2 R U p / p  >> 1, 

where p is the fluid density, U is the fluid characteristic velocity and p is the fluid viscosity 
coefficient. In other words, the influence of the fluid viscosity will be neglected compared with 

* Property of Flow Science Inc., Los Alamos, NM. 
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Figure I .  Spherical bubble of radius R ,  (shaded region) and concentric fluid region of radius r ,  used to describe 
one-dimensional radial wave mode 

that of the surface tension and inertia. Physically this corresponds to large bubbles floating in 
a low-viscosity 1 i q ~ i d . l ~  

Conditions (1) at the bubble surface can now be written as 

where pb is the gas pressure inside the bubble. 

outer free surface, so that 
For simplicity the radius ro will be considered large enough to neglect surface tension at the 

Pko) = Po- (4) 

To derive the equation for R(t), a fluid control volume is introduced at time t with boundaries 
at rl  = R(t) and r2 = r,. The kinetic energy conservation principle for an incompressible fluid 
applied to this control volume, with boundary conditions (2H4), yields the following equation 
for R.15 

For an ideal gas the bubble pressure pb varies with its volume V as 

pb/pbo = (vo /V)y  = ( R 0 / R P 7  (6) 

where the parameter y varies between unity for an isothermal gas and the ratio Cp/Cv of the 
gas specific heats for an adiabatic process (e.g. Cp/Cv = 1.4 for air). To simplify the analysis, we 
will assume that pbo and V, are the equilibrium bubble pressure and volume respectively, i.e. 

pa, - 20/R = PO, 
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and consider motions of the bubble which are small deviations from equilibrium: 

x(t)  = [R( t )  - Ro]/Ro << 1. 

Then, omitting all terms of order higher than one and rearranging, we obtain the linearized 
form of equation ( 5 )  as 

(7) x + a2x = 0, 

a2 = (3YP, - 2a/Ro)/R:P(l/Ro - W O ) .  

where 

(8) 

Similar derivations for one-dimensional cylindrical and planar geometries also yield equation 
(7). For the cylindrical case 

a= = V Y P ,  - d R O ) / R h  In (rolR0). (9) 

and for the planar motion 

a2 = YPbJRoP(r0 - R0)- 

The main difference between these cases is the dependence of a' on the fluid dimensions and 
on the bubble radius. Also, an oscillating solution for infinite fluid thickness (ro + co) only exists 
in the spherical case: 

Equation (7) describes linear natural oscillations with period 

2.2. Numerical analysis 

We will apply a numerical method to solve equation (7). If the time axis is divided into equal 
increments of size At starting at t = 0, then, applying first-order backward differencing, at time 
t = (k + l)At we have 

(13) (xk+l  - 2xk + xk-  ' ) /A t2  + a2x' = 0. 

Here xk = x(kAt). If 1 = k, then the position of the free surface, hence the bubble pressure, is 
included in the calculation explicitly; if 1 = k + 1, then the calculation becomes implicit. Fourier 
analysis, in which the solution of equation (13) is sought in the form 

x k  = e l k A t  , 

where 1 is a complex number and 

Real@) < 0 

is required for numerical stability, shows that the explicit method is stable if 

At < At,,, = 2/a = FIX, 
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while the implicit method is unconditionally stable. Unlike most of the other stability criteria, 
the left-hand side of equation (14) does not depend on the grid size but is a function of the 
natural oscillation period 5. 

Numerical diffusion is absent in the explicit method for stable time step sizes, i.e. 

Real(l) = 0, 

while the implicit method algorithm does introduce numerical diffusion because 

Real@) = -(1/2At)ln (1 + At2a2) < 0, (15) 

with a maximum diffusion at Ar z 1.98/a. 
Equations (8H10) for a’ can be rewritten in the form 

where for the spherical geometry 

for the cylindrical geometry 

for the planar geometry 

N = 1, co = 1, m = P(R0 - ro) 
and Vo is the bubble volume. The parameter m may be used as a measure of the fluid inertia. 

Now it is clear how different characteristics influence the numerical stability criterion given 
by equation (14). For example, a smaller bubble volume or fluid density will decrease the 
maximum time step size. The same is true for a larger bubble ‘stiffness’ ypb16 

The main influence of the bubble geometry is shown by the expression for m. In general, the 
maximum time step size may be increased by increasing the volume of fluid around the bubble 
(e.g. by increasing ro). There is no upper limit for At,,, for the cylindrical and planar geometries 
as ro -, co. However, this is not the case for the spherical geometry. Equation (11) shows that the 
dependence of a on ro decreases rapidly as ro grows and eventually vanishes when ro + co, so 
that even for an infinite volume of fluid there is a finite stability limit. This means that spherical 
bubbles are perhaps the most difficult to model numerically using the explicit method. 

3. NUMERICAL SOLUTION METHOD 

For the numerical simulation the discretized partial differential equations of motion for the fluid 
are solved. For an ideal incompressible fluid the equations are 

To determine the position of the free surface, the following equation is solved for the fluid 
fraction function: 

a F / a t  + (u - V)F = 0. (19) 

A finite volume first-order upwind differencing scheme is employed to solve equations 
(17H19) in three dimensions using a non-uniform mesh of rectangular cells. Owing to the 



420 M. R .  BARKHUDAROV AND S. B. CHIN 

incompressibility of the fluid, the pressure has to be approximated implicitly at each time step 
to avoid numerical instability. The resulting linear algebraic equations for pressure and velocity 
are solved iteratively using the successive overrelaxation (SOR) method.I7 A detailed description 
of the numerical algorithm can be found elsewhere.”*” Here we will briefly outline the main 
steps. At each time step the following steps are performed. 

1. New, first-guess velocities are calculated from the momentum equations using old pressures. 
2. Since in general these velocities will not satisfy the continuity equation (18), an adjustment 

is made to the pressure in full cells only. This adjustment introduces a correction to the 
cell velocity so that the continuity equation is satisfied exactly. 

3. Step 2 carried out in a cell will upset the mass balance in its neighbours and the procedure 
has to be repeated until the divergence of the velocity in all cells is smaller than a predefined 
parameter 6 .  

4. Equation (19) is solved for F by a donor-acceptor advection method using the new 
velocities. 

In the cells which contain a free surface the interface is approximated by a flat surface parallel 
to the nearest co-ordinate plane. In the original SOLA-VOF method the pressure in the surface 
cells was obtained by linear interpolation between the free surface and the neighbouring full 
cell. In the present work the surface cell pressure is estimated by assuming a hydrostatic pressure 
distribution between the free surface and the cell centre. The pressure gradient in the cell is 
defined by the body forces normal to the surface, such as gravity and inertia. The advantage of 
this method in the elimination of possible instabilities arising either from the interpolation 
procedure or in a situation when the same full cell is used to define pressures in two or more 
surface cells. The latter is especially likely to happen in three-dimensional problems. 

Waves on the free surface can also lead to a numerical instability associated with the 
propagation of these waves. If a body forcef, is applied to the fluid in a direction normal to 
the free surface, there may be surface waves with speeds of order ,/(hfb), where h is the depth 
of fluid or the wavelength. In the simulation the cell size in the direction normal to the free 
surface is used for h in each surface cell. The numerical stability condition requires that surface 
waves should not propagate more than one cell in one time step. For example, if z is the normal 
direction to the surface and fb, is the normal body force, then 

Note that the right-hand side of (20) is mesh-dependent. 
At each time step the free surface is not adjusted during the iteration procedure, its position 

being fixed at the previous time step. This effectively means that the free surface boundary 
condition is included explicitly. 

Analytical results of Section 2.2, where an equation for one control volume encompassing the 
whole fluid region was analysed, can be applied to the present numerical method even though 
it uses a number of smaller control volumes. This is because the same conservation laws and 
boundary conditions are used in both approaches. 

In fact, any CFD code which can describe the ‘breathing’ wave mode should have the bubble 
instability problem as an intrinsic feature of the numerical method, unless the fluid free surface 
is included in the calculation implicitly. 

Although there is a fixed upper limit for the time step in the cases considered in Section 2, it 
is difficult to find this limit in the case of general bubble motion with non-symmetrical 
deformations and break-up. For this reason an implicit method was developed to model bubbles. 
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The implicit algorithm estimates the position of the free surface at each iteration by applying 
the latest velocities to the free surface cells to obtain the approximate position of the free surface. 
Then the bubble volume and pressure are estimated and the free surface boundary condition is 
updated for the next iteration. This method is fast since it calculates only surface cell movement 
and does not solve the equation for the fluid fraction function F in the whole domain during 
iteration. 

This development solves the instability problem in many practical cases, though it is 
recognized that it does not eliminate it completely. The flow can still become unstable if the 
bubble is too 'stiff, i.e. small volume variations (e.g. around 1%, which is within the resolution 
error) cause bubble pressure changes out of limits of the physical problem. In this case truncation 
errors in approximating the bubble surface can produce such an effect. If the volume of such a 
bubble changes little during the whole simulation, then it could be treated as an incompressible 
fluid using an appropriate numerical algorithm, e.g. a two-fluid flow algorithm. 

4. NUMERICAL RESULTS 

In this section simulations of cylindrical bubble oscillations are presented. The choice of the 
geometry is only dictated by the ease of the calculation and postprocessing in a cylindrical 
co-ordinate system. 

The following input parameters are used as the basic set of values: 

R o = ~ C I ~ ,  r ,  = lOcm, (21) 

pb = 1-01 x lo6 dyn cm-', (22) 

y = 1.4, p = 4 kg ~ m - ~ ,  Q = 300.0 dyn cm-'. (23) 

p, = 1-0 x 106dyncm-2, 

The difference between the bubble and ambient pressures, Ap = 0.01 x lo6 dyn cm-2, at the 
beginning of the calculation serves as the initiator of the fluid motion. Since Ap constitutes only 
1% of p,, the movement is expected to consist of small displacements of the fluid from its 
equilibrium, governed by equation (7). 

Using equations (9), (12) and (14), we have 

a = 201 s - l ,  At,,, = 001 S, Y = 00313 S. 

The convergence criterion L = 1.0 x s - '  was used to ensure both sufficient speed and 
accuracy of the simulation. The bubble pressure and fluid mean kinetic energy are recorded at 
each time step as indicators of numerical stability. 

4.1. Boundary condition accuracy 

Cylindrical co-ordinates are introduced in such way that the free surfaces at r = R, and r = r,  
are aligned with mesh iso-surfaces r = const. The computational domain includes a sector of 
the bubble and fluid, as shown in Figure 2, with 0 < r < 15 cm. 

First a number of calculations using the explicit algorithm (all calculations below are explicit 
unless stated otherwise) were performed for a uniform mesh with the cell number in the 
r-direction, N, varying between 4 and 30 (N < 4 does not give enough resolution to describe 
the oscillations) and a = AC/A,,,,~ = 0.1 to test the sensitivity of the result to N. The bubble 
pressure oscillations for N = 5 are shown in Figure 3. As expected, the wave amplitude does 
not show any decay and is equal to the initial pressure difference Ap. 
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Figure 2. Section of cylindrical bubble of radius Ro and mesh (N = 14) used for numerical simulations. 0 is the bubble 
centre and the shaded region highlights the fluid 
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Figure 3. One-dimensional cylindrical bubble pressure oscillation with period 5 for N = 5 and Ar = 0.001 s (a  = 01). 
Explicit method 

The amplitude does not depend on the mesh size, but the period FN does vary with N. Figure 
4 shows the relative error 

Krr = (YN - KnPlyt i c s l ) /~ana ly , i ca ,  

plotted against N. The error asymptotically converges to zero as N grows. For the minimum 
number of cells, N = 4, the error is within 15% of the analytical solution and for N > 13 it 
becomes less than 4%. 

The mismatch occurs because, in the absence of a body force, the surface pressure is transferred 
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Figure 4. Relative error of computer simulations of wave period Ye,,, = (FN - Y)/Y as a function of cell number 
N in radial direction for onedimensional cylindrical bubble. Explicit method, a = 0.1 

unchanged from the free surface to the cell centre. This effectively distorts the pressure gradient 
between the inside and outside fluid boundaries. The sign of the error depends on whether a 
surface cell centre is covered with fluid or not, i.e. whether the pressure is shifted inwards (lower 
predicted periods) or outwards (higher predicted periods) of the fluid. 

4.2. One-dimensional flow 

The simulations of the one-dimensional flow employed the N = 14 mesh and the cells size 
Ax = 

The domain shown in Figure 2 is used to investigate the dependence of the stability of the 
calculation on the time step size. The total simulation time is 0.5 s. For N = 14 the calculated 
wave period is 

cm is maintained throughout the rest of the paper. 

.F,, = 0.0324 S, (24) 

which is 3.5% larger than the analytical value (for the reason given in Section 4.1). This means 
that the time step stability limit is also 3.5% larger and equal to AtmrxN = 0.01035 s. 

Figure 5 shows the fluid mean kinetic energy behaviour for the first 0.1 s for four values of 
a. The value a = 0.1 gives a non-decaying wave close to the analytical solution. The onset of 
instability is clearly seen when a = 1.06. However, the amplitude stabilizes after the rapid growth 
in the first 0.05 s, because the flow velocity becomes so high that the time step is reduced to 
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QI 

Figure 6. Relative numerical errors for wave amplitude [&) - A,]/A,, and period, [Y(or) - .FN]/YN, as functions of 
a. A, is the exact analytical solution and 5, is the numerical solution for a small time step size with a = 0MW)I. Explicit 

method, N = 14 

satisfy the Courant stability criterion. The latter is triggered automatically during the calculation. 
The apparent variation in the amplitude with time for a = 0.5 and 0.9 is due to the postprocessing 
interpolation errors. 

Figure 6 shows the dependence of the relative errors of the predicted wave amplitude, 
(F- FN)/FN, and period, ( A  - A,)/A,, on a in the stable range. A, is the exact analytical 
solution for the amplitude, while the period 9- is normalized by FN given by equation (24), 
because for a given mesh, as At 0, 9- converges to YN. Note that although the period varies 
with the time step size, the stability criterion is still defined by YN. 

The instability can be avoided for a given time step by increasing At,.,. This can be achieved, 
for example, by reducing both the ambient pressure po, and the bubble pressure p,,,,, by a factor 
of four. In this case, according to equations (9) and (14), for the given surface tension coefficient 
the maximum time step will approximately double and, for the same At, a = 053,  thus ensuring 
stability. The result is shown in Figure 7 (compare with Figure 5(d)). Note that the wave period 
has also doubled. 

Another way of avoiding the instability is to employ the implicit algorithm described in 
Section 3. Figure 8(a) shows the mean kinetic energy evolution for the input data given by 
equations (21)-(23) and a = 1-06. Initially the mean kinetic energy increases rather steeply but 
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Figure 7. Same as Figure 5(d)  but with bubble stiffness yps ,  reduced by a factor of four so that a = 0 5 3  

then the oscillations decay quickly to zero within a few time steps. The results show a dissipation 
of the fluid energy due to the numerical diffusion inherent in the implicit method. The wave 
decay grows as a increases from 001 to 0.5 in Figure 8, in agreement with the analytical results. 
It follows from equation (15) that the amplitude is halved every 

I = 2a In 2/71 In (1 + 4a2) 

wave periods. For example, for I > 10 it is necessary that a < 0.01 1. 

4.3. Three-dimensional Flow 

Bugg and Rowel’ showed that the SOLA-VOF method can be successfully used to model 
the movement of gas bubbles floating towards the free surface in a fluid vessel. Bubble oscillations 
cannot be reduced only to the radial mode. Shape deformation modes will also be present. In 
a linear approximation these waves do not alter the bubble volume, so that fluctuations of the 
bubble pressure can be attributed to the ‘breathing’ mode only. 

Consider an arbitrary bubble of volume Vo submerged in a fluid chamber surrounded by solid 
walls at x = x l ,  x = x2, y = y,, y = y, and z = -zo and by a horizontally free surface at 
z = 0 > - zo  as shown in Figure 9, together with the mesh used in the simulations. As in the 
one-dimensional case in Section 2.1, the outer free surface is open to the atmosphere at a constant 
pressure po  and pb is the bubble pressure. 

Natural ‘breathing’ mode oscillations will be considered here in the absence of gravity. If the 
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Figure 9. Geometrical set-up and mesh for two-dimensional problem of a bubble of initial volume V, in a fluid chamber. 
Only half of the whole domain was used for the numerical simulations owing to the symmetry 

oscillation period is known, then the time step stability limit is defined by equation (14). There 
is no exact analytical solution available to describe the linear waves in this case, but an 
approximate expression could be obtained. 

Let z = - h  denote the horizontal plane that passes through the geometrical centre of the 
bubble. The two simplifying assumptions that help us to derive an equation for the oscillations 
are as follows. 

Assumption 1. The kinetic energy of the fluid lying below z = - h  is negligible compared 
with that of the fluid above the plane, so that only the motion of the latter will be considered. 

Assumption 2. All the fluid in the region z > - h  moves at a uniform vertical velocity w = i, 

A deeply submerged bubble in a narrow vessel would correspond to these assumptions most 

The volume of fluid lying between z = 0 and the fluid/air interface is 

so that the fluid/air interface stays flat and parallel to z = 0. 

closely. 

v,, = A,h - f v,, 
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Figure 10. Bubble pressure fluctuations for circular and elliptical (with semi-axis ratio qua1 to five) bubbles. Explicit 

formulation, At = 0 0 1  s. zero gravity 

where A ,  is the vessel area in the x-y plane and V, is the equilibrium bubble volume. The 
fluid kinetic energy E and the external force work in the control volume surrounding V,, are 

d E/dt = p( A, h - i Vo)E, 

dA")/dt = P b  Iz u - n d a  - p o A o i ,  

where the integral is taken over the surface of the bubble with the outward normal n. For 
simplicity the surface tension was not included. Owing to the incompressibility of the fluid, we 
have 

lZ u * n  da  = Aoi, (27) 

(28) P b  = Pb(vO/V)y  = &,(VO/(VO + ACIZ))~. 

Summarizing equations (25)-(28), for small deviations of the bubble pressure from the 
equilibrium value pbo = po  the equation for z appears similar to equation (7) but with 

az = PoYA$/PVo(Aoh - iV0). 

a2 = PoYAo/PVoh- 

(29) 

If the fluid volume is much larger than Vo, then equation (29) for a can be simplified as 

In fact, equation (29) for az is a generalization of equation (10) for the planar motion. 
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6 

Figure 1 1 .  Dependence of 'breathing' wave period 9 on distance h for R ,  = 5 cm, showing approximate analytical 
solution (dashed curve) and numerical results (filled squares). Explicit method, At = 0.01 s, zero gravity 

According to equation (29), the wave period decreases with A,. However, the larger the area, 
the less accurate is Assumption 2. 

Since the actual shape of the bubble is not specified, this suggests that F is independent of 
the bubble shape. 

For numerical simulations we will adopt a two-dimensional geometry as before, i.e. infinite 
dimension in the y-direction. In this case all parameters, including A,, are calculated per unit 
length in the y-direction. The dimensions are 

x2 - x1 = 30cm, z ,  = 32.5 cm. 

With the input given by equations (22) and (23) for a circular bubble of radius R ,  = 5 cm 
submerged to a depth h = 20cm we have 

a = 84.57 s-', Atmax = 0.024 S, F = 0.074 S. 

Figure 10 shows that the pressure oscillations for a circular bubble and for an elliptical 
(semi-axis ratio equal to five) bubble of the same volume (and depth) are similar in both frequency 
and amplitude. However, the influence of the shape may become important when the bubble 
size is comparable with the vertical dimension of the fluid and, presumably, if surface tension 
is present. 
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Figure 12. Dependence of 'breathing' wave period 9 on equilibrium bubble radius R, for h = 20cm. showing 
approximate analytical solution (dashed curve) and numerical results (filled squares). Explicit formulation, At = 0.01 s, 

zero gravity 

Figure 11 shows the variation in 5 with h for the circular bubble (R,  = 5 cm) compared with 
that given by equation (29). The match is better for larger values of the depth because Assumption 
2 is more accurate. The minimum value of h is calculated assuming V,, = 0, while for the computer 
simulation h is limited by R ,  and the mesh resolution. 

The oscillation period grows with V,. There will be a larger variation in 9 with the radius 
for spherical bubbles than for a cylindrical one. Figure 12 shows this dependence for a cylindrical 
bubble at h = 20 cm as given by numerical simulations and equation (29). The mismatch for 
small values of the radius is attributed to the lack of grid resolution. For R ,  = 2 cm there are 
only 4 x 4 cells to resolve the bubble surface. The approximate analytical solution becomes less 
accurate for large bubble radii (R z 10cm) owing to Assumption 2 and diverges from the 
numerical result. 

If gravity is present, then the waves cannot be considered linear because there is no equilibrium 
bubble configuration. The overall motion will be a superimposition of non-linear shape 
deformation waves, volume oscillations and the net upward motion of the bubble, making 
Assumptions 1 and 2 inappropriate. Besides, the bubble can break up. A sequence of diagrams 
showing an initially circular 2D bubble floating against the direction of gravity is given in Figure 
13. The flow was simulated with At = 0.01 s. 
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Nevertheless, a few periods of the ‘breathing’ mode can be observed for the initial 025  s as 
shown in Figure 14(a). Here, as well as in Figures 15 and 16, the pressure is recorded at a point 
in the fluid and not in the bubble itself. The mean value of the period is about 0.06 s, close to 
the zero-gravity simulation result. 

The time step stability limit varies with the evolution of the bubble, but a sudden and steep 
decrease in Atmar occurs when the bubble breaks up into three smaller bubbles. This decrease 
may lead to numerical instability if the time step is not small enough to accommodate this change. 

Figure 14(b) shows the evolution of the fluid mean kinetic energy. The onset of instability is 
clearly seen at the time of break-up. The stability limit here is likely to be dictated by the size 
of the smallest bubble. 

Figure 15 shows the result of the numerical simulation with exactly the same input data as 
in Figure 14 but using the implicit algorithm. It is clear that the calculation is more stable here, 
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Figure 14. (a) Pressure at a fluid point and (b) mean fluid kinetic energy evolution as the bubble floats upwards, predicted 
by numerical simulations. Numbers in the bar are the number of bubbles at each time. Explicit formulation, Ar = 0.01 s 
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Figure 16. Comparison of pressure distributions and free surface configurations at r = 0.5 s of simulation for (a) explicit 
and (b) implicit methods 

though some oscillations of the numerical solution can be seen at the end of the calculation. 
The latter happens because the bubble breaks into up to six smaller ones and the mesh becomes 
insufficient to resolve them. Truncation errors introduce bubble volume changes which are 
comparable with the volume itself. 

Figure 16 compares the state of the flow at the end of the explicit and implicit calculations 
at t = 0.5 s. The result from the implicit method is more physically reasonable when compared 
with the explicit method results, since 

(a) the calculated pressure varies spatially in a narrower range of values 
(b) the pressure gradient is more evenly distributed (see pressure contour lines in Figure 16) 
(c) the free surface shape is smoother. 

The use of the implicit algorithm also gives a shorter computation time, because the smoother 
flow allows the use of larger time steps. 
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5. CONCLUSIONS 

It has been shown that a numerical instability can develop when modelling gas bubbles in fluids. 
The instability is associated with the radial or ‘breathing’ wave mode in which the volume of 
the bubble oscillates with time. These oscillations lead to bubble pressure fluctuations governed 
by equation (6). 

If in a numerical model this pressure is used as a boundary condition at the fluid free surface 
surrounding the bubble, then two options are available: explicit or implicit formulation of the 
boundary condition. Explicit formulation means that during the calculation at a given time step 
the free surface is kept at its position defined at the previous time step, while in the implicit 
method the solutions or the free surface position, fluid pressure and velocity are found 
simultaneously. 

The explicit option is conditionally stable, i.e. the time step size is limited to maintain 
numerical stability. The maximum value of the time step is mesh-independent and is a 
function of the natural ‘breathing’ oscillation period. The latter depends on the surrounding fluid 
inertia rn, bubble stiffness ypb, bubble volume V , ,  and surface tension r~ as shown by 
equation (16). 

A method is suggested for finding the stability limit in a situation where no analytical solution 
is available. It simulates numerically the ‘breathing’ oscillation mode and finds its period. The 
maximum time step then can be found from equation (14). However, this approach may not be 
efficient in situations where the oscillation period changes rapidly or when other oscillation 
modes interact with the ‘breathing’ mode. 

The implicit method offers unconditional stability but introduces numerical diffusion which 
depends on the size of the time step. 

The numerical results were obtained using the finite volume CFD code FLOW-3D based on 
the SOLA-VOF method. These results were compared with the exact analytical solution for 
one-dimensional oscillations and with an approximate analytical solution for a three-dimen- 
sional problem. In the latter case the oscillation period (hence the stability limit) does not depend 
on the bubble shape for a given volume. Both numerical and theoretical results are in close 
agreement and it is suggested that the simulated instability can be an intrinsic problem for any 
CFD code which models those oscillations. 

Although the stability criterion depends on a variety of physical parameters, it appears to be 
most sensitive to the bubble volume. This means that bubble break-up is the most significant 
factor that can lead to instability of a numerical algorithm if the time step is not sufficiently 
small. This makes it difficult, if at all possible, to find the stability limit in a general case of 
bubble motion. 

It is a result of the present work that the implicit algorithm for bubble modelling has been 
developed and adopted for FLOW-3D. 
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